
Why
I Support Reform: Larry Sowder, San Diego State University A mathematics curriculum and its implementation might be judged by its results, as is the case in most fields. Good results would suggest keeping things the way they are; poor results would indicate that change of some sort is in order. How well have we been doing with the traditional mathematics curriculum and its implementations? Here are some results:
Note that in those precalculator days, computational skill was extremely important and the focus of schooling in mathematics; nonetheless, the computational skills of the students were poor. These reports were also from times when far fewer students went to college or even finished high school than is now the case. The students in those reports were, presumably, the best ones. In most fields, results like these would not be tolerated; the curriculum and implementation leading to them would be changed. Did the results improve in later times? Sadly, they did not. We continued to have years of experience dealing with a curriculum that made calculation the "star" of the show...with abysmal results, judging from results from the National Assesssment of Educational Progress (1983, p. 26). The prereform curriculum of the late 1970s and early 1980s and its implementation resulted in 60% of the 13yearolds being able to multiply two fractionsthat is, 2 out of every 5 could not multiply two fractions, at a time when such computation was still the dominant part of the curriculum. At the same time, only 17% of the 13yearolds could do a simple "story" problem that involved only multiplying two fractionsthat is, 5 out of 6 could not! Thus, not only was computational skill poor, performance on the conceptual side of fraction multiplication was even worse. Most people would say that a curriculum and implementation leading to such results must be changed! Largescale curriculum and implementation revisions necessarily involve unknowns that breathtakingly successful smallscale changes do not reveal. For example, leaders of one forwardlooking reform group in California were astonished when they visited classrooms to find that too many of the teachers were misinterpreting their training in the use of small group problem solving to mean that all work in mathematics was to be in small groups, without teacher input, intervention, and summary. So there have been errors of implementation in some reform projects, and no doubt there will be similar misrenderings of the intent of reformwitness the interpretation of "decreased attention" to mean "omit" with the 1989 NCTM Standards. But to continue with a curriculum and implementation that has failed so many children for so long is inexcusable. References Johnson, D., & Rising, G. (1967). Guidelines for Teaching Mathematics. Belmont, CA: Wadsworth Pub. Co. National Assessment of Educational Progress. (1983). The third national mathematics assessment: Results, trends, issues. Report No. 13MA01. Denver: Education Commission of the States. Dr. Larry Sowder is a professor in the Department of Mathematics and Computer Science at San Diego State University. 

www.MathematicallySane.com Technical comments or questions to [email protected]. 