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1. INTRODUCTION. Nearly all mathematicians, mathematics educators, teachers,
parents, and students agree on the need to improve the mathematical learning of stu-
dents in our nation’s schools. Yet there are widely differing viewpoints concerning
appropriate directions for school mathematics curricula that might help accomplish
this goal. With its publication of the Curriculum and Evaluation Standards for School
Mathematics in 1989 [5] and subsequent supporting documents on standards for teach-
ing [20] and for assessment [2], the National Council of Teachers of Mathematics
(NCTM) provided a vision of school mathematics that was both broadly embraced [18]
and intensely debated (see, for example, [13], [26], or [27]). In the case of curriculum
recommendations for high school mathematics reform, the NCTM Standards reflected
earlier expressed views of the mathematics community. In particular, in its 1983 re-
port “The Mathematical Sciences Curriculum K–12: What Is Still Fundamental and
What Is Not” [15], the Conference Board of the Mathematical Sciences (CBMS) rec-
ommended that the secondary school curriculum be streamlined to make room for new
topics and techniques from discrete mathematics, statistics, and probability, and that
the content, emphases, and approaches in algebra, geometry, and precalculus be re-
examined in the light of emerging computing technologies. The report suggested that
“technology provides an opportunity to devote less time to traditional [manipulative]
techniques while boosting understanding and allowing more time for more complex,
realistic problem-solving,” but cautioned that “there is little research data on the feasi-
bility of such changes, and there are almost no prototype school curricula embodying
the new priorities” [15, p. 5].

The broad CBMS recommendations received further elaboration in the 1983 Na-
tional Science Board Commission on Precollege Education in Mathematics, Science,
and Technology report “Educating Americans for the 21st Century” [8]. In addition,
that report challenged the sequence of separate year-long courses in algebra, geometry,
and precalculus topics and called for serious consideration of the development of an
integrated secondary school mathematical sciences curriculum. This report, like the
CBMS report that preceded it and the NCTM Standards that followed, sketched direc-
tions for change. These reports did not provide guidance for the specifics of day-to-
day, week-to-week, or even year-to-year practice. That burden was left to curriculum
developers and teachers.

The decade of the nineties was characterized by efforts funded by the National
Science Foundation to develop curricula that interpreted the broad recommendations
for change and to evaluate their effects in schools. This period was also characterized
by continuing debates on mathematics curriculum and teaching issues from various
perspectives—mathematical, historical, societal needs, research on teaching and learn-
ing, and personal experience (see [1], [10]). Open, reasoned debates of these issues are
an important requisite for real progress. However, we agree with learning researchers
Anderson, Greeno, Reder, and Simon [1] that continuing debates should be informed
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by the accumulation of empirical evidence that describes levels of important learning
outcomes consistently achieved by students in particular curricula.

The Core-Plus Mathematics Project (CPMP) is one of four high school mathemat-
ics curriculum development projects funded in 1992 by NSF to develop Standards-
oriented, integrated high school mathematics curricula. The CPMP curriculum,
which has become a focal point of some of the debates on high school mathematics
reform, was developed in consultation with mathematicians, mathematics education
researchers, instructional and evaluation specialists, and classroom teachers. The de-
velopment of the curriculum was further shaped by empirical evidence gathered each
year from teachers and students in a diverse set of schools as they participated in the
piloting and field testing of each course. Data sources include student achievement
pretests and posttests, student attitude surveys, teacher surveys assessing classroom
practices and concerns, structured classroom observations by CPMP evaluation staff,
and written and oral feedback from teachers concerning the curriculum’s strengths and
weaknesses.

These data were collected mainly to monitor the impact of the curriculum over the
four-year process of developing each course and to help guide revisions between pilot
and field-test versions and between field-test and published versions of each course.
We believe that some of our empirical findings, especially those concerning what stu-
dents know and are able to do mathematically when they graduate from high school,
will be of interest to the college mathematics community. We also agree with Day and
Kalman [6] that college mathematics faculty would benefit from being more informed
about the changing curriculum of secondary schools. In this paper, following a brief
overview of how CPMP responded to recommendations for change, we describe the
different patterns of mathematical achievement of students in the curriculum compared
with students in more traditional high school mathematics curricula, with particular at-
tention to students’ preparedness for college mathematics.

2. CURRICULAR CONTENT AND ORGANIZATION. The content and organi-
zation of the curriculum reflects the project’s interpretation of curriculum, teaching,
and assessment recommendations in the NCTM Standards documents and in the ear-
lier CBMS and NSB Commission reports. The curriculum consists of a three-year
core mathematics program intended for a wide range of high school students, plus a
flexible fourth-year course continuing the preparation of students for college math-
ematics. The curriculum is published under the title Contemporary Mathematics in
Context: A Unified Approach [4]. Unit titles for the four-year curriculum are given in
the following table. Information on the goals and topics of the units can be found at
www.wmich.edu/cpmp.

Some of the features of the curriculum that distinguish it from more traditional
curricula are the following.

• Each course advances students’ understanding of mathematics along interwoven
strands of algebra and functions, statistics and probability, geometry and trigonom-
etry, and discrete mathematics.

• These mathematical strands are developed in coherent, focused units that are con-
nected by fundamental ideas such as function, symmetry, and data analysis; and by
mathematical habits of mind such as visual thinking, recursive thinking, and search-
ing for and explaining patterns.

• Mathematics is developed in context with an emphasis on problem solving and math-
ematical modeling.
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TABLE 1. The CPMP curriculum

Course 1

1 Patterns in Data
2 Patterns of Change
3 Linear Models
4 Graph Models
5 Patterns In Space and

Visualization
6 Exponential Models
7 Simulation Models
CAPSTONE Planning a Benefits Carnival

Course 2

1 Matrix Models
2 Patterns of Location, Shape,

and Size
3 Patterns of Association
4 Power Models
5 Network Optimization
6 Geometric Form and Its

Function
7 Patterns in Chance
CAPSTONE Forests, the Environment,

and Mathematics

Course 3

1 Multiple-Variable Models
2 Modeling Public Opinion
3 Symbol Sense and Algebraic

Reasoning
4 Shapes and Geometric

Reasoning
5 Patterns in Variation
6 Families of Functions
7 Discrete Models of Change
CAPSTONE Making the Best of It:

Optimal Forms and
Strategies

Course 4

1 Rates of Change
2 Modeling Motion
3 Logarithmic Functions and

Data Models
4 Counting Models
5 Binomial Distributions and

Statistical Inference
6 Polynomial and Rational

Functions
7 Functions and Symbolic

Reasoning
8 Space Geometry
9 Informatics
10 Problem Solving,

Algorithms, and
Spreadsheets

• Graphing calculators are used as tools for developing mathematical understanding
and for solving authentic problems.

• Instructional materials promote active learning and teaching centered around col-
laborative small-group investigations of problem situations followed by whole-class
summarizing activities that lead to analysis, abstraction, and further application of
underlying mathematical structures.

• Conceptual understanding, reasoning with multiple representations, and oral and
written communication are emphasized.

• Mathematical thinking and reasoning are central to all courses; with formal proof
developed “semilocally” in Courses 3 and 4.

• The design of Course 4 permits tailoring of seven-unit courses around core units
(1–4) plus options so as to keep all college-bound students in the mathematics
pipeline, whether their intended undergraduate program is calculus-based or not.

• Assessment of students is an integral part of the curriculum and instruction.
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Students with aptitude and interest in mathematics are often accelerated into
Course 1 in eighth grade (or earlier), enabling them to complete Course 4 and, if
desired, AP Statistics in eleventh grade and AP Calculus in twelfth grade.

3. PATTERNS OF MATHEMATICAL LEARNING. The main goal of the cur-
riculum is to improve students’ understanding of mathematical concepts and processes
and their ability to use mathematics effectively in realistic problem solving. Our re-
search has focused on how well the curriculum is meeting that goal. One of the most
important overriding questions is:

How does the pattern of mathematics learning that students attain in
the CPMP curriculum differ from that attained by comparable stu-
dents in more traditional curricula?

Relative to this question, over the past eight years we conducted or cooperated in the
conduct of various studies of mathematics achievement in CPMP classrooms. Most of
these studies were part of CPMP’s national field test carried out in thirty-six schools
over four years. A broad cross-section of students from urban, suburban, and rural
communities with ethnic and cultural diversity was represented. Data from the ad-
ministration of a range of achievement measures to CPMP students and comparable
students in more traditional high school mathematics curricula were collected during
these studies.

Since random assignment of students to classes is impossible in school-based stud-
ies, we established the comparability of groups with respect to baseline achievement
measures such as eighth-grade standardized mathematics achievement test scores or
pretest scores from the beginning of grade nine. In nearly every comparison, there was
a great deal of overlap of the two score distributions and plenty of room for improve-
ment by both groups. What is most interesting is the consistent pattern of outcomes
across the studies. CPMP students almost always performed better than comparison
students on measures of conceptual understanding, interpretation of mathematical rep-
resentations and calculations, and problem solving in applied contexts, but sometimes
not as well on measures of algebraic manipulation skills. Some results of studies from
Courses 1, 2, and 3 are briefly summarized as follows:

• On the Educational Testing Service’s (ETS) Algebra End-of-Course Examination,
the subtest means of Course 2 students in three high schools that use CPMP with
all students were higher at the end of the year than those of the national cohort of
algebra students who completed this test.1 The order of subtest mean differences2

1The CPMP sample included the full range of students in three different schools that together serve a
diverse population. At the beginning of grade nine prior to using the CPMP curriculum, the mean of students
in these three schools on the ITED-Q was at the 56th student percentile. However, the CPMP sample is not
nationally representative, and its comparability to the ETS sample cannot be determined precisely. Thus, the
subtest means in the ETS sample reported here should be viewed as benchmarks. From this perspective, the
ETS results show that CPMP students have areas of relative strength that differ from those of the algebra
students who completed this test nationally.

2Percents correct on subtests are given here for ease of interpretation, but we recognize that these figures
mask the variability of subtest scores. The differences on ETS subtests as numbers of standard deviations
(S.D.) of the CPMP group are Concepts (0.45 S.D.), Processes (0.32 S.D.), and Skills (0.05 S.D.). On the
NAEP content subtests, the differences are Statistics & Probability (0.92 S.D.), Measurement (0.67 S.D.),
Algebra & Functions (0.54 S.D.), and Numbers & Operations (0.38 S.D.). On the NAEP process subtests,
the differences are Concepts (0.90 S.D.), Problem Solving (0.65 S.D.) and Procedures (0.44 S.D.). Mean
differences are statistically significant (p < 0.05) on all subtests except ETS Skills.
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favoring the CPMP students were Concepts (50% to 41%), Processes (39% to 32%),
and Skills (43% to 42%).

• On a test consisting of thirty released items from the National Assessment of Educa-
tional Progress (NAEP), the means of CPMP students (mostly juniors) in twenty-two
schools at the end of Course 3 were higher than those of NAEP’s nationally represen-
tative sample of 1992 beginning-of-year seniors on the five content and three process
subtests.3 The content subtests ordered by mean differences were Data, Statistics &
Probability (67% to 45%), Measurement (59% to 43%), Algebra & Functions (53%
to 42%), Geometry (60% to 49%), and Numbers & Operations (44% to 34%). The
process subtests ordered by mean differences were Concepts (61% to 44%), Problem
Solving (53% to 40%), and Procedures (56% to 45%). For more details, see [23].

• In a six-school study of algebraic skill and understanding across the domain of al-
gebra and advanced algebra at the end of Course 3, CPMP students performed sig-
nificantly better (p < 0.05) than a matched group of advanced algebra students on
concept and application tasks. The advanced algebra students scored significantly
better (p < 0.05) on a measure of paper-and-pencil algebraic manipulation skills.
For a detailed task-by-task analysis, see [11]. Similar results were found in sepa-
rate comparisons of CPMP Course 1 and CPMP Course 2 students with algebra and
geometry students, respectively, except that in the Course 2 study there was no sig-
nificant difference in means on algebraic skills between the CPMP and comparison
groups [23].

• A comparison of SAT I Mathematics scores4 of CPMP Course 3 students versus ad-
vanced algebra students from eight schools showed no significant difference. (SAT
Verbal scores were used to statistically equate groups.) A CPMP Course 4 versus
precalculus comparison of SAT Mathematics scores showed a significant mean dif-
ference (p < 0.05) in favor of the CPMP students.

• A comparison of ACT scores of CPMP Course 3 students versus advanced algebra
students from fifteen schools showed a significant difference (p < 0.05) in ACT
Mathematics means favoring the advanced algebra students. This was offset by an
even larger difference favoring CPMP students in ACT Science Reasoning. (ACT
English scores were used to statistically equate groups.) A CPMP Course 4 versus
precalculus comparison showed no significant differences in Mathematics or Science
Reasoning means. (In alignment with some of CPMP’s goals, the ACT Science Rea-
soning test requires students to retrieve information from graphs and tables, draw
conclusions and predict results based on summaries of described experiments, to
compare two opposing views, and to draw conclusions about those ideas.) In spite
of these differences in subtest scores, ACT Composite (average of Mathematics,
Science Reasoning, English, and Reading) means of CPMP and comparison groups

3The CPMP sample was broadly representative of school types and regions of the country. At the begin-
ning of grade nine prior to using the CPMP curriculum, the mean of students in these twenty-two schools on
the ITED-Q was at the 55th student percentile, with school means ranging from the 8th to the 80th student
percentiles. The NAEP sample was composed of beginning-of-year seniors, whereas the CPMP students were
at the end-of-year juniors and are not a nationally representative sample. These facts along with likely dif-
ferences in administration procedures and ordering of test items suggest that the subtest means in the NAEP
sample reported here should be viewed as benchmarks. From this perspective, the NAEP results show that
CPMP students have areas of relative strength that differ from those of typical beginning-of-year twelfth-grade
students.

4The use of SAT and ACT scores for comparisons has the advantage that one can be confident that students
gave their best efforts on the tests. The main disadvantage is that the sample of students who take these tests
is self-selected rather than formed in a systematic way. The results described here are for all scores from those
1998–1999 field-test schools that complied with our request for ACT and SAT scores, a request that was made
of the entire set of field-test schools.
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were virtually identical. SAT and ACT comparisons are described further in [23]
and [24].

Thus, research to date indicates that CPMP students perform particularly well on
measures of conceptual understanding, interpretation of mathematical representations
and calculations, and problem solving in applied contexts. Their performance is also
relatively strong in content areas like statistics and probability that are emphasized in
the curriculum. On measures of algebraic manipulative skills, CPMP students usually,
but not always, score as well as students in more traditional curricula. The nature of
the differences between the mathematical competence of students who complete the
CPMP curriculum and those who complete more traditional high school curricula is
further elucidated by the following comparisons of university mathematics placement
test results.

4. PREPARATION FOR COLLEGE MATHEMATICS. Comparatively weaker
algebra skills of CPMP field-test students at the end of Course 1 and Course 3 as
reported in the previous section prompted several revisions in the published version of
Courses 1 through 3 and in the field-test and published versions of Course 4. By design,
greater emphasis was devoted to symbolic reasoning and manipulation in Course 4. In
addition, a feature was added to each unit in Course 4 called Preparing for Undergrad-
uate Mathematics Placement (PUMP). Each PUMP section consists of ten multiple-
choice practice test items similar to those typically found on university mathematics
department placement tests. The intent of these revisions was to improve students’ flu-
ency in algebraic manipulation skills, while maintaining their strength on measures of
understanding.

Following these revisions, a study was conducted during the Course 4 field test to
determine how well students were prepared for university mathematics courses when
they completed Course 4. Specifically, the research question was the following.

How does the level of preparation for calculus and other undergradu-
ate mathematics courses that students attain in the CPMP curriculum
differ from that attained by comparable students in more traditional
curricula?

Content of CPMP Course 4. Course 4 consists of a core of four units intended for
all college-bound students plus specialized units for students planning to major in the
mathematical, physical, and biological sciences or engineering, and other units for
students planning to major in business and the social or the health sciences. The core
units are the first four units in Table 2, although some topics in these units (for example,
parametric equations in Unit 2 and mathematical induction in Unit 4) are typically not
included in courses for the latter group of students. The Course 4 sequence of inter-
est in this study is the calculus-preparatory sequence for mathematics, engineering,
and the physical or biological sciences. The broad content of that seven-unit course is
outlined in Table 2. (More specific topics in each of these units can be found at the
CPMP website.) As is the case in traditional precalculus courses, some of this content
has already been introduced in previous courses but is dealt with more formally and
deeply in Course 4. As in all courses, the topics are usually developed in the context of
modeling realistic problem situations and then examined in terms of their underlying
mathematical structure. Although use of graphing calculators is assumed, increased
attention is given in Course 4 to analysis of symbolic representations of functions and
associated symbolic manipulation and reasoning skills.
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TABLE 2. Focus of Course 4 calculus-preparatory units

1 Rates of Change
Instantaneous Rates of Change
Rates of Change for Familiar Functions
Accumulation at Variable Rates

2 Modeling Motion
Modeling Linear Motion—Vectors
Simulating Linear and Nonlinear Motion—Parametric Equations

3 Logarithmic Functions and Data Models
Inverses of Functions
Logarithmic Functions
Linearizing Data

4 Counting Models
Methods of Counting
Counting Throughout Mathematics
The Principle of Mathematical Induction

5 Polynomial and Rational Functions
Polynomial Functions
Polynomials and Factoring
Rational Functions

6 Functions and Symbolic Reasoning
Reasoning with Exponential and Logarithmic Functions
Reasoning with Trigonometric Functions
Solving Trigonometric Equations
The Geometry of Complex Numbers

7 Space Geometry
Representing Three-Dimensional Shapes
Equations for Surfaces

Sample. The sixth of the seven CPMP calculus-preparatory units, “Functions and
Symbolic Reasoning,” features content that is especially crucial for calculus and is
prominent on most placement tests. It includes both conceptual and symbolic manip-
ulation work with logarithms, verifying trigonometric identities, solving trigonomet-
ric equations, and reasoning and calculating with complex numbers in trigonometric
form. In this comparison, the CPMP group consisted of all students (N = 164) who
completed at least six of these seven units, including “Functions and Symbolic Rea-
soning,” as part of their four-year study of the CPMP program. The precalculus stu-
dents (N = 177) comprised all college-intending students in the field test who were
at the end of a traditional precalculus course that was the fourth course in a college-
preparatory sequence that included algebra, geometry, and advanced algebra. Both
groups were composed of students who fell mainly between the 75th and 95th na-
tional percentile, on average about the 85th percentile for each group, on standardized
mathematical achievement tests at the beginning of or just prior to high school. The
very best mathematics students in these schools were likely enrolled in an AP Calculus
course as seniors.

Instrument. A placement test used at a major university was administered to students
in field-test schools at the end of CPMP Course 4 or at the end of traditional precalcu-
lus. This multiple-choice test is used to make recommendations to entering freshmen
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concerning the college mathematics course that would be best for them. The test was
compiled from a bank of placement items that until recently was available from the
MAA. A graphing calculator (such as the TI-82 or TI-83) that does not have symbol
manipulation capability is allowed on this test.

This test contains three subtests—Algebra (15 items), Intermediate Algebra (15
items), and Calculus Readiness (20 items). The first two subtests consist almost en-
tirely of algebraic manipulation tasks such as simplifying and factoring algebraic ex-
pressions, solving equations and inequalities, and finding equations for lines given
sufficient conditions. The third subtest measures some of the important concepts and
processes that underlie calculus, such as reasoning with logarithmic and exponential
equations, trigonometric functions and identities, composition of functions, rational
functions and their domains, systems of nonlinear equations, and area under a curve.
Items similar to selected items from each subtest are presented in a later section.

Group differences by mathematical subtest. Placement subtest means and standard
deviations for each group are given in Table 3. While there is room for improvement by
both groups on all three subtests, we focus here on group differences on the subtests.
On the algebra subtest, the means of the precalculus and CPMP Course 4 groups were
virtually identical. On the intermediate algebra subtest, the mean of the precalculus
group was greater than that of the Course 4 group. The only statistically significant
difference in means was on the calculus readiness subtest (t = 4.93, p < 0.01). That
difference favored the CPMP students.

TABLE 3. Results by group and subtest

Algebra Intermediate Algebra Calculus Readiness

Group N Mean SD Mean SD Mean SD

CPMP 164 11.5 2.6 9.2 3.4 12.9 4.7
Precalculus 177 11.4 2.3 9.6 3.2 10.5 4.3

To examine further the group differences in performance by mathematical content,
we ran for each item a t-test that compared the mean performance for CPMP Course 4
students with that of the precalculus students. This allowed us to identify all items for
which the mean for the two groups differed substantially (0.01 level of significance).
These items are analyzed next.

Algebraic test items. All algebra and intermediate algebra test items for which
Course 4 and precalculus means differed at the 0.01 level of significance are given in
Table 4. Group item means differed significantly on only two of the fifteen algebra
test items, and the mean differences were significant on seven of the fifteen interme-
diate algebra items (in all, four in favor of the CPMP students and five in the other
direction).

Different emphases of the CPMP and traditional curricula help to explain most of
the differences in item means. The treatment of geometry every year and the emphasis
on connections between algebra and geometry in the CPMP curriculum may explain
why students were better able to find an equation of a line through two given points
(BC 1). A similar explanation may apply for IC 2 where students have first to identify
the opposite vertices of a rectangle in order to find the length of the diagonal. The
other two items favoring CPMP involved algebraic manipulation, but some conceptual
understanding may help students avoid common errors. In IC 1, many students are
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TABLE 4. Algebra test items∗

Algebra Test Items

CPMP > Precalculus (p < .01) Precalculus > CPMP (p < .01)

BC 1. CPMP 91%; Precalculus 76%

What is the equation of the line which
goes through the points (0, 3) and
(1, 5)?

BP 1. CPMP 78%; Precalculus 91%

The inequality 5x − 4 < 2x + 6 is
equivalent to:

Intermediate Algebra Test Items

CPMP > Precalculus (p < .01) Precalculus > CPMP (p < .01)

IC 1. CPMP 55%; Precalculus 38%

If x > 0, then
√

25x2 − 9x2 = ?

IP 1. CPMP 59%; Precalculus 73%

Subtract:
1

b
− 4

a
= ?

IC 2. CPMP 90%; Precalculus 78%

If a rectangle has vertices (0, 0), (4, 0),
(0, 3) and (4, 3), then the length of a
diagonal is approximately:

IP 2. CPMP 55%; Precalculus 69%

Add:
b

2a
+ b

3a
= ?

IC 3. CPMP 65%; Precalculus 50%

Which of the following best approxi-
mates the positive solution of the equa-
tion: x2 − 5x = 4?

IP 3. CPMP 64%; Precalculus 79%
√

27x6 y9 = ?

IP 4. CPMP 44%; Precalculus 62%

One of the factors of 15x2 + 7x − 2 is:
∗These items are parallel to the actual test items, but with answer choices removed.

tempted to take the square root of each term in the difference under the radical sign.
Failure to rewrite the quadratic equation with all terms on one side is the common
error in IC 3. It is likely that most CPMP students solved such an equation using
either the graph- or table-building capabilities of their calculators, thereby avoiding
inappropriate reasoning about factors or pitfalls inherent in remembering or using the
quadratic formula.

All the items on which the precalculus students scored higher involved uses of sym-
bol manipulation procedures that are commonly emphasized in traditional curricula.
These include operations with rational expressions (IP 1 and IP 2) and factoring trino-
mials with leading coefficient greater than one (IP 4), topics that are emphasized less
in the CPMP curriculum in order to devote more time to developing conceptual under-
standing of polynomial and rational functions and their uses as mathematical models.
Another of these items required an answer in simplest radical form (IP 3), a topic that
receives less attention in the calculator-enhanced CPMP curriculum.

Calculus readiness test items. All calculus readiness test items for which the CPMP
Course 4 and precalculus mean percent correct differed at the 0.01 level of significance
are given in Table 5. Group item means differed significantly on twelve of the twenty
calculus readiness items, eleven in favor of the CPMP students and one in the other
direction.

Consistent with evaluation findings described earlier, CPMP students performed at
a higher level than precalculus students on measures of conceptual and application out-
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TABLE 5. Calculus readiness test items∗

CPMP > Precalculus (p < .01)

RC 1. CPMP 65%; Precalculus 45%

The box pictured below has a square
base and a closed top. Express its sur-
face area in terms of b and h.

h

b

RC 7. CPMP 66%; Precalculus 50%

In the right triangle shown: sin B =
0.47 and b = 4. Find c.

c=?

B C

A

b=4

RC 2. CPMP 73%; Precalculus 48%

If f (x) is a function whose graph is the
parabola shown, then f (x) > 0 when-
ever:

–1 321

RC 8. CPMP 77%; Precalculus 45%

The area of the rectangle pictured be-
low is:

f (x) = x2 + 4x–1

0.6 0.8

RC 3. CPMP 63%; Precalculus 40%

A certain deer population increases by
a factor of 1.2 each year. (For example,
if there are 100 deer now, a year from
now there will be 120.) Over a 12-year
period, by what factor does the deer
population increase?

RC 9. CPMP 73%; Precalculus 48%

The point of intersection, in the first
quadrant, of the line y = 3x + 1 and
the curve y = 2x2 has the x-coordinate
equal to:

RC 4. CPMP 74%; Precalculus 56%

If
(3x − 1)(x + 1)

(x − 1)
= 0, then x = ?

RC 10. CPMP 67%; Precalculus 47%

cos(90◦ − φ) = ?

RC 5. CPMP 77%; Precalculus 62%

If f (x) = 3x − 2 and g(x) = x2, then
g( f (x)) = ?

RC 6. CPMP 49%; Precalculus 29%

If 26,000 = 10x , then x is

RC 11. CPMP 53%; Precalculus 37%

The measure, in radians, of the angle φ

shown below is:
y

x

(1, 2)

φ

Precalculus > CPMP (p < .01)

RP 1. CPMP 40%; Precalculus 56%

cos φ cot φ sec2 φ = ?
∗These items are parallel to the actual test items, but with answer choices removed.
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comes. A perusal of the group item data and the items themselves illustrates the nature
of the differences. Virtually all the items on which CPMP students did better measure
conceptual understanding or applications of mathematics. Many items on which group
means differed most involve graphical or diagram interpretation and/or verbally-stated
applications (RC 1, RC 2, RC 3, RC 7, RC 8, RC 9, and RC 11), both areas of emphasis
in the CPMP curriculum. The large difference in understanding of exponents indicated
by item RC 6 may be due to the early, conceptual introduction to exponents in CPMP
Course 1 and frequent revisiting of situations involving exponential growth and ex-
ponential functions throughout the curriculum. The other calculus readiness items on
which CPMP students did better (RC 4, RC 5, and RC 10) are symbolic, but they
require understanding of key ideas and not just recall of procedures.

The item that favored precalculus students, RP 1 in Table 5, involves recall of
trigonometric definitions followed by simplifying a product of three trigonometric
fractions. This difference in means is not unexpected. Because of the emphasis on
circular functions as mathematical models, students worked less in CPMP than in pre-
calculus classes with secant, cosecant, and cotangent functions.

Course placements. The main educational significance of this test lies in its use as
a tool to help place entering freshmen in beginning college mathematics courses. To
facilitate course placement, mathematics departments establish criteria like the follow-
ing for the test in the present study: (1) Calculus I is recommended if a student has a
total score of 35 or higher; (2) a precalculus course is recommended if the combined
score on the algebra and intermediate algebra subtests is at least 20; and (3) a more
basic course is recommended if neither of criteria 1 and 2 is met.

Notice that the calculus readiness subtest score does not enter into criterion 2. Based
on these typical criteria, the algebraic skills of students placed in the same course are
likely to be more or less homogeneous, but their levels of conceptual understanding
as measured by the calculus readiness subtest may be very different. In fact, that is
the case in the present study. Table 6 gives the calculus readiness mean and standard
deviation for the subsets of the high school curriculum groups that met each of the
above placement criteria.

TABLE 6. Calculus readiness results by group and criterion met

Criterion 1 Criterion 2 Criterion 3

Group N Mean SD N Mean SD N Mean SD

CPMP 83 16.6 2.3 25 9.9 3.1 56 8.8 3.4
Precalculus 69 14.8 2.6 44 8.7 2.5 64 7.2 2.8

For those meeting each of the three criteria, the calculus readiness mean of CPMP
Course 4 students is one-third to over one-half a standard deviation higher than the
precalculus students’ mean. In fact, the calculus readiness mean of Course 4 students
in the criterion 3 group is essentially the same as that of traditional precalculus students
in the criterion 2 group.

5. SUMMING UP. In this paper, we have provided a broad overview of a high school
mathematics curriculum that embodies the recommendations for change and new pri-
orities called for in major school mathematics policy documents of the 1980s and early
1990s. We have also described patterns of performance of students who experienced
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the curriculum and examined how those patterns differ from the performance of stu-
dents who complete more traditional curricula. In line with recommendations of the
CBMS report [15], the evaluation has been ongoing for an extended period of time
and in a variety of school settings. Nonetheless, we agree with McKnight and his col-
leagues [17, pp. 1–2] that educational research does not provide proof in a mathemati-
cal sense concerning the research questions it addresses. Rather, as related educational
research studies accumulate, they provide a body of evidence that can be used to help
inform educational issues and decisions. In that spirit, we have presented our findings,
and in the same spirit we offer the following observations.

The reported findings are consistent with an earlier finding by Begle [3]—recently
reaffirmed in the 1995 Third International Mathematics and Science Study [22], in a
study of the impact of systemic initiatives in high school mathematics classes con-
ducted by the RAND Corporation [16], and in a research review by Schoenfeld [25]—
that the curricular materials used in schools affect student learning in important ways.
On the whole, the evidence suggests that it is possible to streamline the traditional com-
ponents of high school mathematics and incorporate important concepts and methods
of statistics, probability, and discrete mathematics, while significantly improving stu-
dents’ understanding of the mathematical content and its applications. A trade-off in
somewhat lower traditional paper-and-pencil algebraic skills may result, although the
revisions in the Course 4 field-test material appear to have reduced the deficit.

Because of equity considerations, the CPMP curriculum capitalized on the capa-
bilities of graphing calculators rather than computers. Still, in 1983 CBMS raised the
possibility that “In the future, students and adults may not need to do much algebraic
manipulation—software like muMath will do it for them—but they will still need to
recognize which forms they have and which forms they want” [15, p. 4]. Capabilities
and user-friendliness of computer algebra systems (CASs) have advanced considerably
since the 1981 version of muMath. Today CASs are available for handheld devices as
well as for desktop platforms. Future curriculum development and research efforts
need to focus carefully on how best to address manipulative skills that remain impor-
tant, particularly in a CAS world, at the same time maintaining gains in mathematical
understanding and problem solving.

The CPMP curriculum and other similar NSF-funded high school mathematics
curricula share many of the content themes of reform calculus courses: greater em-
phasis on conceptual understanding; better balance among verbal, graphical, numer-
ical, and symbolic representations; and greater attention to realistic applications and
mathematical modeling, including data analysis. They also share many of the ped-
agogical themes, including: greater emphasis on active learning and teaching, often
involving collaborative group work; more experience in communicating mathematics,
both orally and in writing; use of technology, particularly graphing calculators, for ex-
ploration and problem solving; and more varied methods of assessment [12], [21]. In
addition, the increased attention in reform high school curricula to statistical ideas and
probabilistic reasoning and to discrete mathematical modeling and matrices is con-
sistent with recent core curriculum initiatives in undergraduate mathematics [7]. In
principle, these commonalities could provide a smooth transition between high school
and college mathematics. In practice, current placement tests seldom assess the new
mathematical knowledge and abilities that students from reform programs bring to our
campuses. This fact is one of the reasons why the MAA Board of Governors recently
voted to discontinue support for the use of their placement test program.

A continuing central issue in the development of mathematics curriculum materials
is how to properly balance conceptual understanding, procedural skill, and problem
solving. Traditional mathematics curricula have often been organized and taught as a
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sequence of techniques ordered from basic to more complex. The assumption under-
lying this organization seems to be that technical proficiency should (even must) be
developed before focusing curriculum and instruction on conceptual understanding,
problem solving, and applications. This assumption also underlies placement tests that
often screen students on manipulative skills first, with only those who pass through the
skill filter assessed on conceptual understanding and reasoning. On the other hand, cur-
ricula like CPMP draw on recent research on teaching and learning mathematics that
suggests there is not a strict linear ordering in the learning of skills, concepts, and ap-
plications, especially in the presence of today’s technological tools [9]. These curricula
are organized so that conceptual understanding, procedural skill, and problem solving
develop together, largely through problem-based activities in which students engage in
making sense of mathematical situations. As a consequence of these competing view-
points, students from reform high school curricula may be penalized depending on the
interpretation of scores on traditionally organized placement tests. Interpretations of
scores on such placement tests are likely to be even more problematic when, unlike in
this study, calculator use is prohibited.

In conclusion, we believe that the results presented here provide evidence in sup-
port of the feasibility of curricula that embody the recommendations for change in [5],
[8], [15], and more recently in NCTM’s Principles and Standards for School Math-
ematics [19]. The results are also consistent with the emerging research on NCTM
Standards-oriented curricula reviewed by Schoenfeld, who noted that “There is sub-
stantial and mounting evidence that when teachers are adequately prepared to help stu-
dents work through these curricula, the students learn not only skills and procedures,
but also concepts and problem solving as well” [25, p. 22]. More research is needed
to study the effect of the final versions of these new curricula on student achievement
outcomes in high school and post-high school settings. Ideally, such research would
involve schools that have faithfully implemented the curriculum for at least a few years
so that (1) teachers understand and take advantage of the curriculum’s full scope and
sequence and (2) both teachers and students are accustomed to the expectations of the
classroom environment. With guidance from research and with support from a broad
range of stakeholders, including mathematicians, high school curriculum developers
will be in a position to build on what is now known and work toward even stronger
patterns of student outcomes in the future.

6. A FINAL NOTE. Just as CPMP students in the reported study were relatively
better prepared for concepts that underlie calculus than for formal algebraic manipu-
lation, one might expect that they would be better prepared for a reform undergradu-
ate calculus course than for a traditional one. Two studies of the transition to college
mathematics of students who experienced at least three years of the pilot- or field-test
versions of the CPMP curriculum have recently been completed.

In one study, four years of college mathematics grade data were analyzed for all
graduates of a nearby suburban high school who attended the University of Michigan,
which has a reform calculus program [23]. This high school used a traditional math-
ematics program in the first two years of the study and a pilot version of CPMP with
all but the accelerated students in the third year and with all students in the fourth
year. During each year of the study, accelerated students typically took AP Calculus
as seniors. Over the four years, the numbers of graduates of this high school who ma-
triculated at the University of Michigan were 50, 74, 87, and 72, respectively. Over
these same four years, freshman students completing Calculus I or a higher mathe-
matics course at the University of Michigan among graduates of this high school as
a percent of the total number of matriculants were 70%, 60%, 68%, and 65%. (If a
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student completed two such courses, the student was counted twice.) Average grades
on a 4.0 scale for these students in Calculus I and higher mathematics courses were
2.71, 2.98, 3.13, and 3.08, respectively. Obviously many factors other than a student’s
high school mathematics program play a role in success or failure in college mathe-
matics. With that caveat, however, it is clear that this four-year trend is consistent with
a conjecture that the CPMP curriculum did no harm to either the percent of students
enrolling in these courses or their course grades—and may have helped the latter.

In a preliminary report of a second study, the experiences of seven students who
had completed three years and, in some cases, a fourth year of the pilot- or field-test
version of the CPMP curriculum were carefully monitored as they entered Michigan
State University [14]. Experiencing varying degrees of difficulty with the transition to
traditional university content and teaching, three of these students passed traditional
Calculus I with grades of B or higher, two others passed with lower grades, and a
sixth student withdrew before the end of the course. The seventh student encountered
difficulty with traditional Calculus I, seeing the course as dramatically different from
her high school CPMP classes. She transferred after two class periods to Applied Cal-
culus, an alternative track in which a Harvard reform textbook is used. She went on
to earn grades of ‘A’ in both Applied Calculus I and II. According to the researchers,
“She quickly found that course [Applied Calculus I] and its successor . . . more to her
liking. The content fit perfectly with her Core experiences, the problems were the fa-
miliar situational type . . . . She cruised through both semesters of Applied Calculus,
reporting few difficulties” [14, p. 21].
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